Announcing PrntrBoard V2

Reflecting on the PrntrBoard V1, there are many good things that I managed to accomplish:

    • all 3 versions of the board (2130, 2660 and 2209) were functional
    • the board features were good
    • driver cooling was excellent

When I started 2 years ago, there were very few 32-bit boards with comparable features. Now there is quite a bit of them. I was trying to find what makes one design more popular than the other and in addition to the board features it comes down to flexibility.

In PrntrBoard V1 I was trying to provide superior cooling solution compared to the tiny replaceable driver board used everywhere. However that choice came at the expense of a monolithic design, which was expensive to make and costly to evolve. Every time I wanted to use a different driver chip I had to re-design the whole board from scratch. It was not going to be sustainable in the long run.

Announcing the PrntrBoardV2: combining all lessons learned and expanding the versatility of the design.

First major change is that the motor drivers are no longer part of the board. Because I still find the original Pololu driver form factor very limiting, I designed the motor driver carried boards to use PCIe slots instead of pin headers.

Here is what the carrier board looks like

The board has 32-bit Arm micro controller – my favorite STM32F407. There are 6 stepper motor slots, with support for 6 thermistors or 6 thermocouples (vie external boards).

There are 4 power MOSFET outputs (1 bed and 3 heaters) and 5 low power MOSFET outputs for fans or LEDs.

Connectivity is via traditional USB, micro-sd card. There are 2 more serial ports for a smart LCD controller and WiFi extension.

I have the traditional RAMPS LCD expansion headers, which should support a variety of LCD screen designs.

Last but not least there are 8 end stops and the ability to route the stall detection signal from the steppers to individual end stops or a global “Alarm” signal.

Drivers are on separate boards with PCIe card edge connectors. This is what the TMC2660 version looks like

And this is what the TMC2209 version looks like

I added some mounting holes next to the PCIe slots so the drivers would not wiggle out of the slot with extensive vibrations.

These driver boards are much larger than the Pololu drivers, which would allow for superior cooling and the ability to have more board real estate for complex designs and or big driver ICs.

In addition the driver boards are mounted vertically on the carrier board, which saves space on the carrier board and allow for excellent air flow trough the drivers with a pair of 40mm fans.

Last but not least because of the reduced requirements on the carrier board, I can use 2 layer instead of 4 layer board, which makes the cost even lower.

I can’t wait to make a few of these and run them trough some tests.